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1. Let us use the method given in Cl] to solve the first boundary value problem for 
the three-dimensional Fourier equation in Cartesian coordinates 
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defined on the domain bounded by coordinate planes moving in accordance with some 
rulesR@) (f)andH(‘) (t)so that 1 t 

J’i E (Iii(“) (I), 1(1(l) (1)) 

where i denote the coordinate axis number. Assume that the functions R?) and II!‘) 
possess continuous first and second order derivatives. We then obtain 

$,+rs + $ (l)i*li;‘lJi’ + 2qj_“Ri(‘)“!/i) 1.3 = !-J + f (1.2) 

II = ‘I (Yl? I * ., Y,, ‘) 1’ (Ylt . . .t y,,, f), Yi = “‘i- iii(“) 
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(‘Ii = /fi(r) _ ~ti(o)) (1.3) 
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Equation (1.2) admits an exact solution in the terms of well-known functions, provided 

that the following conditions hold simultaneously for all a : 

(3) (1.6). 

Here Ai, Bit Ci, Di, El, fifi are constants depending on i. Particular cases of the mot- 
ions represented by (1.4) and (1.5) have been obtained in [l - 31. 

2. If the domain is given in the cylindrical coordinate system and is bounded by pl- 
anes in the z direction and by surfaces moving according to the rules 

2 = RI(“)(f), 2 = RP (1); r = Rl (9, r = & (t) 2s URI (t) (a = const) 

in the r direction, then the proposed method transforms the Fourier equation in U into 
the following equation written in terms of another function V: 

where 

(I = q (~1, m t) 1’ &I~ (PI ?A 1) (2.2j 

Yl=+_ (yl e (a, l))1 ys = za - b(O) 
r) 

(q & Raw _ @o) 

Equation (2.1) admits an exact solution in the terms of well-known functions provided 
that the conditions 

R,“R,- = const, q”q’- = const, qaR~(“)” = const (2.3) 
hold simultaneously when 

RI = v fd,P + All + BI. Ra = aR1 (a, At, 131, MI = const) (2.4) 

while RF)and #satisfy the equations of motion of the type (1.4) - (1.6). 
We note that the domains defined above include in particular the following ones: 

a) a parallelepiped, one parallel pair of faces of which moves in the relevant axial 
direction according to (1.4). the second pair according to (1.5) and the third pair acc- 
ording to (1.6); 

b) a bounded hollow cylinder whose side surfaces follow (2.4) and the end-walls any 
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one of (1.4). (1.5) or (1.6). 

8. Obviously. when the domain consists of a spherical symmetrical layer bounded by 

spherical surfaces, the equations of motion of which coincide with either (1.4) or (1.5) 

or (1.6). application of the same procedure yields an exact solution of the initial prob- 
lem in spherical coordinates, as the substitution W = U/r (ris the coordinate and W is 
the new function) transforms the equation 

into (1.1) which has been already considered. 
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